TUGAS 2.3 COMPUTER VISION
Definisi
Computer Vision adalah ilmu dan teknologi mesin yang melihat, di mana mesin mampu mengekstrak informasi dari gambar yang diperlukan untuk menyelesaikan tugas tertentu. Sebagai suatu disiplin ilmu, visi komputer berkaitan dengan teori di balik sistem buatan bahwa ekstrak informasi dari gambar. Data gambar dapat mengambil banyak bentuk, seperti urutan video, pandangan dari beberapa kamera, atau data multi-dimensi dari scanner medis. Sedangkan sebagai disiplin teknologi, computer vision berusaha untuk menerapkan teori dan model untuk pembangunan sistem computer vision.
Computer Vision didefinisikan sebagai salah satu cabang ilmu pengetahuan yang mempelajari bagaimana komputer dapat mengenali obyek yang diamati. Cabang ilmu ini bersama Artificial Intelligence akan mampu menghasilkanVisual Intelligence System. Perbedaannya adalah Computer Vision lebih mempelajari bagaimana komputer dapat mengenali obyek yang diamati. Namun komputer grafik lebih ke arah pemanipulasian gambar (visual) secara digital. Bentuk sederhana dari grafik komputer adalah grafik komputer 2D yang kemudian berkembang menjadi grafik komputer 3D, pemrosesan citra, dan pengenalan pola. Grafik komputer sering dikenal dengan istilah visualisasi data.
Sejarah
Pada akhir 1960-an, penglihatan komputer dimulai di universitas yang merintis kecerdasan buatan. Teknologi ini dimaksudkan untuk meniru sistem pengelihatan manusia, sebagai batu loncatan untuk memberkahi robot dengan perilaku cerdas. Pada tahun 1966, diyakini bahwa ini dapat dicapai melalui proyek musim panas, dengan menempelkan kamera ke komputer dan membuatnya "menggambarkan apa yang dilihatnya".
Apa yang membedakan visi komputer dari bidang pengolahan gambar digital yang lazim pada waktu itu adalah keinginan untuk mengekstraksi struktur tiga dimensi dari gambar dengan tujuan mencapai pemahaman adegan penuh. Studi di tahun 1970-an membentuk fondasi awal untuk banyak algoritma visi komputer yang ada saat ini, termasuk ekstraksi tepi dari gambar, pelabelan garis, pemodelan non-polihedral dan polihedral, representasi objek sebagai interkoneksi dari struktur yang lebih kecil, aliran optik, dan estimasi gerak.
Dekade berikutnya ditandai dengan studi berdasarkan analisis matematika yang lebih ketat dan aspek kuantitatif dari penglihatan komputer. Ini termasuk konsep matematika skala-ruang, inferensi bentuk dari berbagai isyarat seperti bayangan, tekstur dan fokus, serta model kontur yang dikenal sebagai snake. Para peneliti juga menyadari bahwa banyak dari konsep-konsep matematika ini dapat diperlakukan dalam kerangka optimisasi yang sama seperti regularisasi dan bidang acak Markov.
Pada 1990-an, beberapa topik penelitian sebelumnya menjadi lebih aktif daripada yang lain. Penelitian dalam rekonstruksi 3-D proyektif menyebabkan pemahaman yang lebih baik mengenai kalibrasi kamera. Dengan munculnya metode optimasi untuk kalibrasi kamera, disadari bahwa banyak ide yang telah dieksplorasi dalam teori penyesuaian bundel dari bidang fotogrametri. Ini mengarah pada metode rekonstruksi 3-D dari beberapa gambar. Kemajuan dibuat dalam masalah korespondensi stereo padat dan teknik stereo multipandang yang lebih maju. Pada saat yang sama, variasi potongan grafik digunakan untuk menyelesaikan segmentasi gambar. Dekade ini juga menandai pertama kalinya teknik pembelajaran statistik digunakan dalam praktik untuk mengenali wajah dalam gambar (lihat Eigenface). Menjelang akhir 1990-an, perubahan signifikan terjadi dengan meningkatnya interaksi antara bidang grafis komputer dengan penglihatan komputer. Ini termasuk rendering berbasis gambar, perubahan gambar, interpolasi tampilan, jahitan gambar panorama dan rendering bidang cahaya awal.
Perkembangan terkini ditandai dengan kebangkitan metode berbasis fitur, digunakan bersama dengan teknik pembelajaran mesin dan kerangka kerja optimasi yang kompleks.
Computer Vision adalah kombinasi antara :
- Pengolahan Citra (Image Processing), bidang yang berhubungan dengan proses transformasi citra/gambar (image). Proses ini bertujuan untuk mendapatkan kualitas citra yang lebih baik.
- Pengenalan Pola (Pattern Recognition), bidang ini berhubungan dengan proses identifikasi obyek pada citra atau interpretasi citra. Proses ini bertujuan untuk mengekstrak informasi/pesan yang disampaikan oleh gambar/citra.
Hubungan dari kombinasi tersebut dapat dilihat pada gambar berikut :
Fungsi / Proses pada Computer Vision
Untuk menunjang tugas Computer Vision, terdapat beberapa fungsi pendukung ke dalam sistem ini, yaitu :
- Proses penangkapan citra (Image Acquisition)
- Image Acqusition pada manusia dimulai dengan mata, kemudian informasi visual diterjemahkan ke dalam suatu format yang kemudian dapat dimanipulasi oleh otak.
- Senada dengan proses di atas, computer vision membutuhkan sebuah mata untuk menangkap sebuah sinyal visual.
- Umumnya mata pada computer vision adalah sebuah kamera video.
- Kamera menerjemahkan sebuah scene atau image.
- Keluaran dari kamera adalah berupa sinyal analog, dimana frekuensi dan amplitudonya (frekuensi berhubungan dengan jumlah sinyal dalam satu detik, sedangkan amplitudo berkaitan dengan tingginya sinyal listrik yang dihasilkan) merepresentasikan detail ketajaman (brightness) pada scene.
- Kamera mengamati sebuah kejadian pada satu jalur dalam satu waktu, memindainya dan membaginyamenjadi ratusan garis horizontal yang sama.
- Tiap‐tiap garis membuat sebuah sinyal analog yang amplitudonya menjelaskan perubahan brightness sepanjang garis sinyal tersebut.
- Kemudian sinyal listrik ini diubah menjadi bilangan biner yang akan digunakan oleh komputer untuk pemrosesan.
- Karena komputer tidak bekerja dengan sinyal analog, maka sebuah analog‐to‐digital converter (ADC), dibutuhkan untuk memproses semua sinyal tersebut oleh komputer.
- ADC ini akan mengubah sinyal analog yang direpresentasikan dalam bentuk informasi sinyal tunggal ke dalam sebuah aliran (stream) sejumlah bilangan biner.
- Bilangan biner ini kemudian disimpan di dalam memori dan akan menjadi data raw yang akan diproses.
- Proses pengolahan citra (Image Processing)
- Tahapan berikutnya computer vision akan melibatkan sejumlah manipulasi utama (initial manipulation) dari data binary tersebut.
- Image processing membantu peningkatan dan perbaikan kualitas image, sehingga dapat dianalisa dan di olah lebih jauh secara lebih efisien.
- Image processing akan meningkatkan perbandingan sinyal terhadap noise (signal‐to‐noise ratio = s/n).
- Sinyal‐sinyal tersebut adalah informasi yang akan merepresentasikan objek yang ada dalam image.
- Sedangkan noise adalah segala bentuk interferensi, kekurangpengaburan, yang terjadi pada sebuah objek.
- Analisa data citra (Image Analysis)
- Image analysis akan mengeksplorasi scene ke dalam bentuk karateristik utama dari objek melalui suatu proses investigasi.
- Sebuah program komputer akan mulai melihat melalui bilangan biner yang merepresentasikan informasi visual untuk mengidentifikasi fitur‐fitur spesifik dan
karekteristiknya. - Lebih khusus lagi program image analysis digunakan untuk mencari tepi dan batas‐batasan objek dalam image.
- Sebuah tepian (edge) terbentuk antara objek dan latar belakangnya atau antara dua objek yang spesifik.
- Tepi ini akan terdeteksi sebagai akibat dari perbedaan level brightness pada sisi yang berbeda dengan salah satu batasnya.
- Proses pemahaman data citra (Image Understanding)
- Ini adalah langkah terakhir dalam proses computer vision, yang mana sprsifik objek dan hubungannya diidentifikasi.
- Pada bagian ini akan melibatkan kajian tentang teknik-teknik artificial intelligent.
- Understanding berkaitan dengan template matching yang ada dalam sebuah scene.
- Metoda ini menggunakan program pencarian (search program) dan teknik penyesuaian pola (pattern matching techniques).
Contoh aplikasi dari Computer Vision
Beberapa aplikasi yang dihasilkan dari Computer Vision antara lain :
1. Psychology, AI – exploring representation and computation in natural vision
2. Optical Character Recognition – text reading
3. Remote Sensing – land use and environmental monitoring
4. Medical Image Analysis – measurement and interpretation of many types of images
5. Industrial Inspection – measurement, fault checking, process control
6. Robotic – navigation and control
2. Optical Character Recognition – text reading
3. Remote Sensing – land use and environmental monitoring
4. Medical Image Analysis – measurement and interpretation of many types of images
5. Industrial Inspection – measurement, fault checking, process control
6. Robotic – navigation and control
Sumber :
http://muhammadadri.net/wp-content/uploads/2009/04/computer-vision-01.pdf
http://cosaviora.blogspot.com/2010/11/computer-vision.html
http://juliocaesarz.blogspot.com/2010/11/computer-vision.html
https://eziekim.wordpress.com/2011/11/23/computer-vision/
https://id.wikipedia.org/wiki/Pengelihatan_komputer
Komentar
Posting Komentar